Uniqueness of free actions of finite abelian groups on surfaces

Zhao, Xuezhi

Capital Normal University

4th Russian-Chinese Conference on Knot Theory and Related Topics, July 2017

イロト イポト イヨト イヨ

Pree actions of Abelian groups on surfaces

- Free actions
- Actions in the form of matrices
- Oniqueness theorem
 - Examples
 - The main result

御 ト く ヨ ト

Let G be a finite abelian group. We list all the cases where the conjugacy class of orientation-preserving free G-actions on a closed surface is unique. A joint work with Y. She.

< □ > < 同 > < 回 > < 回

NEC group

Double action v.s. Topological equivalence

Two homomorphisms η,η' are said to be equivalent under the double action if

Here, $(\zeta, \xi) \in \operatorname{Aut}(G) \times \operatorname{Aut}(\Lambda)$.

Topological equivalence of *G*-actions

$$\begin{array}{c} G \times X \ni (g, x) \longrightarrow g(x) \in X \\ \downarrow \\ G \times X \ni (\zeta(g), f(x)) \longrightarrow \zeta(g)(f(x)) = f(g(x)) \end{array}$$

i.e. $f^{-1}\zeta(g)f = g \in Home(X)$.

Basic relations

Given a compact surface S and a finite group G, there exist one-to-one correspondences among following three sets:

- (1) topological equivalence classes of G-actions on S,
- (2) equivalence classes of Aut(G) × Aut(Λ)-actions of the set of epimorphisms from some Non-euclidean crystallographic group (NEC group) Λ to the group G, having fundamental group π₁(S) as kernels, i.e. 1 → π₁(S) → Λ → G → 1.
- (3) conjugacy classes [*G*] of subgroups of the mapping class group of *S*.

Very non-trivial relations: (2) to (1): Macbeath (1967). (3) to (1): Kerckhoff (1983).

ヘロン 人間 とくほ とくほ とう

ъ

Basic relations

Given a compact surface S and a finite group G, there exist one-to-one correspondences among following three sets:

- (1) topological equivalence classes of G-actions on S,
- (2) equivalence classes of Aut(G) × Aut(Λ)-actions of the set of epimorphisms from some Non-euclidean crystallographic group (NEC group) Λ to the group G, having fundamental group π₁(S) as kernels, i.e. 1 → π₁(S) → Λ → G → 1.
- (3) conjugacy classes [*G*] of subgroups of the mapping class group of *S*.

Very non-trivial relations: (2) to (1): Macbeath (1967). (3) to (1): Kerckhoff (1983).

イロト イポト イヨト イヨト

3

<u>non-Euclidean crystallographic group (NEC group) Λ</u>

NEC group

(\blacklozenge) Definition: discrete, cocompact subgroup of *Iso*(\mathbb{H}^2). (\heartsuit) Signature (notation):

 $\Lambda = (g; +/-; [m_1, \ldots, m_r]; \{(n_{11}, \ldots, n_{1s_1}), \ldots, (n_{k1}, \ldots, n_{ks_k})\}).$ (\diamondsuit) generators:

> x_i (rotation). $1 \leq i \leq r$, c_{ij} (reflection), e_i , $1 \le i \le k$, $0 \le j \le s_i$, a_i, b_i (translations) 1 < i < q. d_i (glide reflection),

(**♣**) relations:

$$\begin{aligned} x_i^{m_i} &= 1, & 1 \leq i \leq r, \\ c_{ij}^2 &= (c_{ij-1}c_{ij})^{n_{ij}} = 1, & 1 \leq i \leq k, \\ c_{is_i} &= e_i c_{i0} e_i^{-1}, & 1 \leq i \leq k, \\ x_1 \cdots x_r e_1 \cdots e_k [a_1, b_1] \cdots [a_g, b_g] = 1, & 1 \leq i \leq k, \end{aligned}$$

NEC group

Automorphism groups of NEC's and braid groups

Let $\Lambda = (g; +; [m_1, \dots, m_r])$. Then Aut(Λ) is generated by

- Dehn twist,
- $\sigma_{ij}(x_i \mapsto x_i x_j x_i^{-1}, x_j \mapsto x_i)$ for $r_i = r_j$, i.e. x_i and x_j have the same order,
- $\mu_{ij}(a_i \mapsto a_i u x_j u)$,
- $\nu_{ij}(b_i \mapsto b_i v x_j v)$.
- i.e. restricted braid groups on surfaces.

Question: How many equivalence classes of $Aut(G) \times Aut(\Lambda)$ -actions for epimorphisms from Λ to G (having surface group kernels iff x_i and its image has the same order)?

ヘロン 人間 とくほ とくほ とう

Free actions Actions in the form of matrices

Our case: free action

- (1) topological equivalence classes of free G-actions on S,
- (2) equivalence classes of double-actions of the set of epimorphisms from $\Lambda = \pi_1(S')$ to the group *G*, having the fundamental group $\pi_1(S)$ as kernels.

Note:

(1) The kernel of such an epimorphism must be the fundamental group of a surface,

(2) $\chi(S) = |G| \cdot \chi(S')$

・ 同 ト ・ ヨ ト ・ ヨ ト

Homomorphisms and matrices

Since any homomorphism from $\pi_1(S_h)$ to a finite abelian group G factors through $H_1(S_h) = \mathbb{Z}^{2h}$, any homomorphism $\eta : \pi_1(S_h) \to G$ is determined by a matrix $M_{s \times (2h)}$, meaning

$$(\eta(\bar{a}_1),\eta(\bar{b}_1),\ldots,\eta(\bar{a}_h),\eta(\bar{b}_h))=(\omega_1,\ldots,\omega_s)M,$$

In this sense,

an $Aut(\pi_1(S_h))$ -action is said to be a right action, while an Aut(G)-action is said to be a left action.

$$M \sim M' \Leftrightarrow M' = A M B$$

where $A \in Aut(G)$, $B \in Sp(2h, \mathbb{Z})$.

・ロット (雪) () () () ()

Free actions Actions in the form of matrices

Right action (generators of symplectic matrix group)

$$(1) \ \iota_{2i-1,2i} = \begin{pmatrix} 1 & \ddots & & \\ & 0 & 1 & & \\ & & & \ddots & 1 \end{pmatrix}, \text{ indicating } \mathfrak{A}_{i} : \bar{b}_{i} \mapsto \bar{b}_{i} + \bar{a}_{i};$$

$$(2) \ \iota_{2i,2i-1} = \begin{pmatrix} 1 & \ddots & & \\ & 1 & 0 & & \\ & 1 & 1 & & \\ & & \ddots & 1 \end{pmatrix}, \text{ indicating } \mathfrak{B}_{i} : \bar{a}_{i} \mapsto \bar{a}_{i} + \bar{b}_{i};$$

$$(3) \ \iota_{2i,2i+2}^{-1}\iota_{2i+1,2i-1} = \begin{pmatrix} 1 & \ddots & & \\ & 1 & 0 & 0 & 0 & \\ & 0 & 1 & 0 & -1 & \\ & 0 & 0 & 0 & 1 & \\ & 0 & 0 & 0 & 1 & \\ & & \ddots & 1 \end{pmatrix}, \text{ indicating }$$

Free actions Actions in the form of matrices

Right action (generators of symplectic matrix group)

$$(4) \ \tau_{2i-1,2i} D_{2i}(-1) = \begin{pmatrix} 1 & & & \\ & 1 & 0 & & \\ & & 1 & 0 & \\ & & & & 1 \end{pmatrix}, \text{ indicating}$$

$$\mathfrak{R}_{i} : \bar{a}_{i} \mapsto \bar{b}_{i}, \bar{b}_{i} \mapsto -\bar{a}_{i};$$

$$(5) \ \tau_{2i-1,2i+1} \tau_{2i,2i+2} = \begin{pmatrix} 1 & & & & \\ & 0 & 0 & 1 & 0 & \\ & 0 & 0 & 0 & 1 & \\ & 1 & 0 & 0 & 0 & \\ & 0 & 1 & 0 & 0 & \\ & 0 & 1 & 0 & 0 & \\ & 0 & 1 & 0 & 0 & \\ & 0 & 1 & 0 & 0 & \\ & & 1 & 0 & 0 & \\ & & & 1 \end{pmatrix}, \text{ indicating}$$

$$\mathfrak{S}_{i} : \bar{a}_{i} \mapsto \bar{a}_{i+1}, \bar{b}_{i} \mapsto \bar{b}_{i+1}, \bar{a}_{i+1} \mapsto \bar{a}_{i}, \bar{b}_{i+1} \mapsto \bar{b}_{i}.$$

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Free actions Actions in the form of matrices

What is the left action

Any matrix *A* from left is determined by an element in Aut(*G*). (Assumption: $G = Z_{n_1} \oplus \cdots \oplus Z_{n_s}$ with $n_s | \cdots | n_1$).

The generators of Aut(*G*) are: $L_{i,j}$ for i > j, $L_{i,j}^{n_i/n_j}$ for i < j, and $D_t(k)$ with $gcd(k, n_t) = 1$,

The structure of Aut(G) is not simple.

イロト 不得 とくほ とくほ とう

э.

An example

When G is a cyclic group.

 $\stackrel{(*,*,*,*)}{\mapsto} \stackrel{\mathfrak{A}_1,\mathfrak{A}_2,\mathfrak{B}_1,\mathfrak{B}_2}{\mapsto} (d_1,d_1,d_2,0) \stackrel{\mathfrak{Z}_1}{\mapsto} (d_1+d_2,d_1,d_2,-d_1+d_2) \\ \stackrel{\mathfrak{Z}_1,\ldots}{\mapsto} (0,d,0,d) \stackrel{\mathfrak{Z}_1}{\mapsto} (0,d,0,0).$

Examples

 d_1 is the GCD of first two entries, d_2 is the GCD of last two entries, and *d* is the GCD of all entries.

A folk Theorem: the free action of cyclic group on a close surface is unique up to conjugation.

イロト イポト イヨト イヨト

Examples The main result

Case $G = Z_{n_1} \oplus Z_{n_2}$

Any epimorphism from $\pi_1(S_h)$ to *G* is double-equivalent to one determined by $\begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 0 & s & t & 0 & \cdots \end{pmatrix} \xrightarrow{3_1} \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ t & s & t & -s & \cdots \end{pmatrix}$, to $\begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 0 & q & 1 & 0 & \cdots \end{pmatrix}$, with $q|n_2$.

Note that $\mathfrak{W}^1(\eta_q)$ has order n_2/q . We obtain that

The number of conjugacy classes of free action of $G = Z_{n_1} \oplus Z_{n_2}$ on closed surface is the same as the number of factor of n_2 .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Examples The main result

Some invariants from cohomology

Lemma

Let $\eta : \pi_1(S_h) \to G$ be a homomorphism. Then for each positive integer k,

$$\mathfrak{W}^{k}(\eta) =: \sum_{1 \leq i_{1} < \cdots i_{k} \leq s} \eta(\bar{a}_{i_{1}}) \wedge \eta(\bar{b}_{i_{1}}) \wedge \cdots \wedge \eta(\bar{a}_{i_{k}}) \wedge \eta(\bar{b}_{i_{k}}) \in \wedge^{2k} G$$

is an $Aut(\pi_1(S_h))$ -action invariant.

Corollary: the order $|\mathfrak{W}^k(\eta)|$ is a double-action invariant.

Any homomorphism η from $\pi_1(S_h)$ to G can be considered as a element in $H^1(S_h, G)$. For k = 1, $\mathfrak{W}^1(\eta) = (\eta \cup \eta)[S_h] \in G \otimes G$, an invariant given by S. A. Broughton and A. Wootton (2007).

イロン 不良 とくほう 不良 とうほ

Examples The main result

Some invariants from cohomology

Lemma

Let $\eta : \pi_1(S_h) \to G$ be a homomorphism. Then for each positive integer k,

$$\mathfrak{W}^k(\eta) =: \sum_{1 \leq i_1 < \cdots i_k \leq s} \eta(\bar{a}_{i_1}) \wedge \eta(\bar{b}_{i_1}) \wedge \cdots \wedge \eta(\bar{a}_{i_k}) \wedge \eta(\bar{b}_{i_k}) \in \wedge^{2k} G$$

is an $Aut(\pi_1(S_h))$ -action invariant.

Corollary: the order $|\mathfrak{W}^k(\eta)|$ is a double-action invariant.

Any homomorphism η from $\pi_1(S_h)$ to G can be considered as a element in $H^1(S_h, G)$. For k = 1, $\mathfrak{W}^1(\eta) = (\eta \cup \eta)[S_h] \in G \otimes G$, an invariant given by S. A. Broughton and A. Wootton (2007).

イロト 不得 とくほ とくほ とうほ

Examples The main result

One more example

Proposition

If $n_1 \ge n_2 = n_3 \ge n_4$ and $gcd(\frac{n_1}{n_2}, \frac{n_2}{n_4}) = 1$, then the double-equivalence class of epimorphisms from $\pi_1(S_2)$ to $G = \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \mathbb{Z}_{n_3} \oplus \mathbb{Z}_{n_4}$ is unique.

Begin with
$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & m_{1,2} & 1 & 0 \\ 0 & m_{1,3} & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
. Since $gcd(\frac{n_1}{n_2}, \frac{n_2}{n_4}) = 1$, there
are two integers v and w such that $v\frac{n_1}{n_2} + w\frac{n_2}{n_4} = 1$. Thus,
 $m_{1,j} = m_{1,j}(v\frac{n_1}{n_2} + w\frac{n_2}{n_4})$ for $j = 2, 3$. We have that
 $M \to \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & m_{1,2}(1 - w\frac{n_2}{n_4}) & 1 & 0 \\ 0 & m_{1,3}(1 - w\frac{n_2}{n_4}) & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & m_{1,3}v\frac{n_1}{n_2} & 1 & 0 \\ 0 & m_{1,3}v\frac{n_1}{n_2} & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

Examples The main result

Examples The main result

The main result

Theorem

Let $G = \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_s}$ be a finite abelian group. The the $\operatorname{Aut}(G) \times \operatorname{Aut}(\pi_1(S_h))$ -equivalence class is unique if and only if either

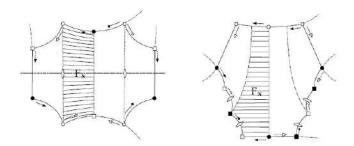
(1)
$$s = 1$$
, or
(2) $s = 2h - 1$, $n_2 = \dots = n_{2h-1}$ and $gcd(\frac{n_1}{n_2}, n_2) = 1$, or
(3) $s = 2h$, $n_2 = \dots = n_{2h-1}$ and $gcd(\frac{n_1}{n_2}, \frac{n_2}{n_{2h}}) = 1$.

Theorem

Assume that G is not a cyclic group, i.e. s > 1. The closed surface S_g admits a unique free G-action if and only if $g = n_1(h-1)n^{2h-2}t + 1$ for some integers h, n and $n = n_2 = \cdots = n_{2h-1}$, where integers n, t satisfy one of the following conditions:

Examples The main result

Tilling: Geometric interpretation



A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E > < E</p>

Examples The main result

Some references

(1) C. J. Hillar, D. L. Rhea, *Automorphisms of finite Abelian groups*, American Mathematical Monthly, **114**(2006), no. 10, 917-923.

(2) W. J. Harvey, *Cyclic groups of automorphisms of a compact Riemann surface*, Quart. J. Math. Oxford Ser., (2) **17** (1966), 86-97.

A book related to NEC groups

(3) E. Bujalance, J. J. Etayo, J. M. Gamboa, G. Gromadzki. *Automorphisms Groups of Compact Bordered Klein Surfaces. A combinatorial approach*, Lecture Notes in Mathematics **1439**, (Springer-Verlag 1990).

イロト イポト イヨト イヨト

Examples The main result

(4) S. A. Broughton, A. Wootton, *Finite abelian subgroups of the mapping class group*, Algebr. Geom. Topol., **7** (2007), 1651-1697.

(5) S. A. Broughton, A. Wootton, *Topologically unique maximal elementary abelian group actions on compact oriented surfaces*, J. Pure Appl. Algebra, **213** (2009), 557-572.
(6) E. Bujalance, F. J. Cirre, M. D. E. Conde, B. Szepietowski, *Finite group actions on bordered surfaces of small genus*, J. Pure Appl. Algebra, **214** (2010), 2165-2185.
(7) A. F. Costa, M. Izquierdo, *On the existence of connected*

components of dimension one in the branch locus of moduli spaces of Riemann surfaces, Math. Scand., **111** (1) (2012), 53-64.

イロト イポト イヨト イヨト

Examples The main result

Thank you for your paying attention.

Zhao, Xuezhi Uniqueness of free actions of finite abelian groups on surfaces

イロト イポト イヨト イヨ